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The dynamics of two-dimensional uniform wavetrains on the interface between a 
viscoelastic compliant coating and a boundary-layer flow are explored theoretically. 
The coating is treated as a single-layer isotropic Voigt material of h i t e  thickness that 
is bonded to a rigid half-space. The flow is modelled first by potential theory and then 
modified to incorporate pressure phase shifts and magnitudes found in boundary- 
layer flow over wavy walls. The consideration of viscoelastic effects has led to an 
important dimensionless damping parameter 7, = Ct7,/d (where 7, is the strain 
relaxation time, C, is the elastic shear-wave speed and d is the layer depth) that seems 
to have been overlooked by experimentalists. The flow and the damping are found 
to have dramatic effects on wave propagation. Using flow pressure and material- 
damping parameters typical of experiments, the results show that both upstream- and 
downstream-propagating waves exist at low flow speeds. At higher flow speeds, 
shorter waves can no longer propagate upstream. A t  still higher velocities, two 
instabilities, 'static divergence ' and 'flutter ', are found. Static divergence occurs for 
flow speeds above 2.86Ct and consists of slow waves moving with speeds of about 
O.02Ct. These results compare fairly well with published experimental data. Static 
divergence is found to be a damping instability for these coating systems. When the 
flow speed is increased further, the flutter instability appears consisting of waves with 
phase speeds about equal to C,. 

1. Introduction 
The desire to reduce skin friction, flow noise and panel flutter has motivated a 

number of studies of the behaviour of waves at  the interface between viscoelastic 
structures and boundary-layer flows. Most studies (see e.g. Bushell, Hefner & Ash 
1977; Chyu & Au-Yang 1973; Dugundji, Dowel1 & Perkin 1963; Gislason 1971 ; Miles 
1956) have involved experiments and theory for waves on relatively simple structures, 
such as membranes, free plates, and plates supported by springs and dampers. The 
experiments have shown the existence of instabilities at  sufficiently high flow speeds, 
and these instabilities are predicted fairly well by the theories. A series of theoretical 
papers by Benjamin (1960, 1963, 1964) and Landahl (1962) examined the effects of 
compliant boundaries on the stability of laminar flow. These papers presented a 
general theory of the instabilities in fluid-elastic systems. Three classes of waves were 
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found, each supporting a different instability mechanism : class A (damping 
instabilities), class B (phase-lag instabilities), and class C (Kelvin-Helmholtz or flutter 
instabilities). The theory was then applied to  flow over a coating-like structure 
consisting of a modified membrane model. 

Morerecently, Hansen& Hunston (1974,1983), Hansenetal. (1979)andGad-el-Hak, 
Blackwelder & Riley (1984) have performed experiments to examine instabilities in 
systems of flow over thin layers of viscoelastic materials that  are bonded to a rigid 
plate. The material used for the coatings was a plastisol gel. For turbulent flows, the 
experiments showed that at a sufficiently high flow speed (3 or more times the shear- 
wave speed of the solid, C,), slowly moving unstable waves appeared on the coating 
surface. These waves, which are called static divergence waves (presumably in 
analogy to  the static Kelvin-Helmholtz instability found in potential flow over panels 
of finite length - Dowel1 1975), move with speeds of only a few percent of the shear- 
wave speed and have wavelengths of the order of the coating thickness. I n  the case 
of laminar flow over the coating, Hansen & Hunston (1983) found a similar 
instability, but with an onset flow speed of about 4.5Ct, while Gad-el-Hak et al. (1984) 
were unable to  find the instability at any flow speed. 

I n  this paper a simple theory is presented to  model the experiments on flow over 
viscoelastic coatings. Specifically, we calculate the dispersion relations for waves on 
homogeneous isotropic coatings consisting of Voigt materials that  are attached to  a 
rigid half-space on one side and bounded by a turbulent or laminar flow on the other. 
The flow and the coating are inviscidly coupled by the interfacial pressure and the 
normal velocity. A simple flow model is employed consisting of potential theory that 
is modified to  incorporate pressure phase shifts and magnitudes found in turbulent 
or laminar flow over wavy walls. The dispersion curves resulting from this linear 
analysis are used to explore the physics of waves in the flow-coating system. It is 
realized that this simple model cannot describe the effects of the wall on waves that 
would exist in a boundary layer over a rigid surface. In  the case of a simple wall model 
and a laminar flow Landahl & Kaplan (1965) have performed extensive numerical 
calculations of this type. However, our main goal is to elucidate the dynamics of the 
instabilities found in the published experimental studies under both laminar and 
turbulent flows, and, as the results will show, the present theory is adequate for this 
purpose. The dispersion curves can also be used to  explore the generation of stable 
waves in the coating surface by turbulent pressure fluctuations, a subject that is at 
the heart of attempts to reduce turbulent skin friction with a compliant surface. 

The paper is divided into three sections. I n  $2 a derivation of the dispersion relation 
is presented. The numerical results showing the dispersion curves as a function of flow 
speed and material properties are given and discussed in $3. Included are comparisons 
with the available experimental data. The concluding remarks are found in $4. 

2. Theoretical analysis 
In  this section we derive dispersion relations for surface waves on a layer of 

homogeneous, isotropic Voigt material of uniform thickness d and infinite horizontal 
extent. On its lower boundary, the layer is attached to a rigid half-space. On its upper 
surface i t  is bounded by flowing water (see figure 1). At the interface between the 
fluid and the coating we consider a wave of the form 

= a eik(z-et) 

where a is the amplitude, k is the wavenumber (271 divided by the wavelength A )  
and c (=  c,+ ici) is the complex wave speed. The propagation speed of the wave is 

(1) 
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FIQURE 1. Layer schematic. 

given by c, and the wave growth rate by kci (ci > 0 indicates a growing wave). The 
differential equation of motion governing small displacements in a Voigt material is 
(see Fung 1965) 

(2) -- az4- c;v24+(cg-C;)v(v.(), 
at2 

where 4 = gi+ 7 j is the displacement vector and [and r] are the horizontal and vertical 
components (see figure 1). CT and C, are the complex shear and longitudinal wave 
speeds of the solid. Considering small displacements proportional to eik(z-ct), we have 

I 12% = C,"(l -ikdCy,), 

where C = c/Ct, C, and C, are the shear- and longitudinal-wave speeds in an ideal 
elastic solid, and yt and y, are introduced as dimensionless damping ratios, defined 

The relaxation times T~ and 7, indicate the dissipative properties of the material. For 
incompressible materials the damping properties are sometimes reported in terms of 
the loss tangent, tan S = rt w,, where w, = c, k. 

There are four boundary conditions for the present problem : 

g = o  ( y = - d ) ,  (7) 

7 = 0 ( y = - d ) ,  ( 8 )  

where p is the density of the coating and Pf is the surface pressure. Equations (5) and 
(6) are the linearized continuity-of-force conditions at the upper boundary. The 
calculations of Benjamin (1959) show that the variations in pressure over the wave 
profile far outweigh the variations in shear stress. Also, the flow pressure is much 
greater than the normal viscous stress. Thus in the present model we match the flow 
pressure and the vertical stress component in the coating, while the shear stress at 
the interface is taken to be zero. Conditions (7) and (8) state that there is no horizontal 
or vertical displacement at the lower boundary y = -d. 

The solution of these equations is accomplished by breaking the displacement field 
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( into two parts: one with zero curl, cc, and one with zero divergence, Ct (see Fung 
1965, p. 184). Thus we have 

where # and $ are scalar functions of time and position. When these definitions are 
substituted into (2) and the curl and divergence of the equation are taken separately, 

from the divergence, and 

from the curl. Note that the equations have been divided by CZ, and Ck. At complex 
frequencies where CT = 0 or C ,  = 0 this introduces artificial poles into the implicit 
function defining the dispersion relation. Care is taken to avoid these poles in the final 
results. 

The solutions to (10) and (11) are greatly simplified if 3 and Y can be taken equal 
to zero. I n  the Appendix we show that this is the case for c =+ 0. For the purely static 
case, c = 0, i t  is demonstrated that both b and Yare nonzero. However, the criterion 
that follows for these static solutions is equivalent to that obtained with 3 = Y = 0 
in the limit c = 0. Thus, without loss of generality, we propose to  derive the dispersion 
relation with m = = 0. We look for solutions of the form 

and, after substituting these into (10) and ( l l ) ,  we have 

The solutions of these ordinary differential equations are 

where 

sinh aky 
k a  $ = A ,  + B, cosh aky, 

sinh pky $ =  pk + B, cosh pky, 

C2 p = 1--. 
C?i 

These solutions are to be substituted into the boundary conditions (5)-(8). Before 
doing this, let us first determine a form for the surface pressure Pr. For potential flow 
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of s$ed U ,  and density pe over a boundary of the form of (l), the pressure can be 
shown to be P,,, = -peak( U ,  -c), eik(z-ct). (18) 

We model the actual mean-pressure distribution in the turbulent or laminar 
boundary-layer flow by modifying the above potential-flow pressure equation to allow 
for a reduced magnitude and phase change. This is a reasonable technique in view 
of the experimental data of Kendall (1970) and the theoretical work of Benjamin 
(1959) and Balasubramanian & Orszag (1983). Thus we have 

Pf = - K p  pe ak( U ,  - c)2 ei[ep+k(z-ct)l. (19) 

For a given boundary layer the constants K p  and 8, are functions of wavenumber 
and phase speed. In the present work values are taken from the experimental data 
of Kendall(l970) for turbulent flows and from Balasubramanian & Orszag (1983) for 
laminar flows. We believe that this relatively simple modelling of the fluid forces on 
the coating includes the essential physics for the phenomenon considered here. Note, 
however, that this model would not be able to predict the effect of the coating on 
instabilities in a boundary-layer flow, such as Tollmien-Schlichting waves. 

After substituting (9), (12), (14) and (15) into the boundary conditions, we have 
four homogeneous algebraic equations for the unknowns A,, B,, A, and B,. The 
dispersion relation for surface waves in the solid/fluid system results from setting the 
determinant of the coefficients equal to zero : 

e%($-l)(icoshakd sinhpkd-a coshpkd sinhakd 
B 

1 
(1 +$) +% (1 +p), (cosh akd cosh /3kd -- sinh akd sinhpkd ct a@ 

+4-(coshakd cz, coshpkd-apsinhakd sinhpkd) = 0. (20) c: 
This dispersion relation is a complicated implicit function that is analytic in the 
complex phase speed c, except at the singularities introduced by dividing the 
equations of motion by Ct and CZ, (see comment after (10) and (11)). The numerical 
results presented in $3 were obtained using a contour-integration method to find the 
complex zeros of the dispersion function. This method is based on the work of Delves 
& Lyness (1967). 

3. Results and discussion 
It is convenient to present the results in several parts. First, in $3.1, the physics 

of the interfacial waves are discussed in terms of the wave classes identified by 
Benjamin (1963) and Landahl (1962). Then, in 93.2, dispersion curves for a potential 
flow over a purely elastic incompressible coating are presented, and regions of the 
curves that belong to the three separate wave classes are identified. The effect of 
material damping and pressure distributions that simulate boundary-layer flows are 
presented in 53.3. Finally, in 93.4, the results of the model are compared with existing 
experimental data. In all cases the coating materials have been taken as nearly 
incompressible, Cc/Ct = 70 and yc = 0. 

3.1. Wave classes 
Before discussing the numerical results, i t  will be useful to briefly review the findings 
of Benjamin (1960, 1963, 1964) and Landahl (1962). Their work emphasized the 
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stability of laminar flow over membranes, but their general concepts are applicable 
to the present case as well. The authors found three separate classes of waves 
(designed A, B and C) in the fluid/coating system. Classes A and B are neutrally stable 
in an ideal system (with no damping and no pressure phase lags), while class C, flutter, 
is unstable. Each class can be identified by the sign of the ‘activation energy’ AE 
defined by Benjamin (1963) as the change in kinetic and potential energy of the 
coating plus the change in energy of the flow due to the work done on the coating 
by conservative forces only. In the present case we have 

where KE and SE, the kinetic and elastic-strain energy of the coating respectively, 
are defined as 

(note that the use of the lower-case subscripts in (22) is intentional, see (3)). To derive 
the conservative work term we follow Benjamin’s (1963) derivation of the work done 
by a potential flow, substituting the conservative part of our pressure term 

P,,,, = - K p  pr ak( U ,  - c)2 cos 0, eik@+) (24) 

for the potential-flow pressure in his calculation. Thus we find 

;J”” WCon, dx = +K,P, k cos O,(CC* - v”,) q”, (25) 

where f = a ekeit. Note that when K ,  = 1 and 0, = 0 (a potential flow) this reduces 
to minus Benjamin’s expression for the energy loss of the flow (his expression (A 6)) 
with his wave amplitude f(t) taken as aekeit and without the restriction that f =  0 
a t  time t. This generalization to growing waves is necessary in the calculation of AE 
for unstable waves and, as will be seen in $3.2, gives the correct result for class C 
waves, i.e. AE = 0. The sign of AE is used to define the three wave classes. It is 
negative for class A waves, positive for class B waves, and zero for class C waves. 
For classes A and B the rr.agnitude of AE is proportional to a2. In each wave class 
the irreversible energy -transfer processes (damping and pressure phase shifts) affect 
the stability of the fluid-coating system differently. 

Let us consider the effect of damping on the three classes of waves. For this 
discussion the pressure phase lag (from the potential-flow case) is assumed to be zero. 
In all wave classes damping removes mechanical energy from the solid. Thus, as any 
of these waves propagate, damping tends to decrease BE. In each class the wave 
amplitude behaves differently to accommodate this decrease. The most familiar case 
is class B, where the wave amplitude decreases with decreasing system energy. Here 
damping tends to make the wave decay. For class A waves, where the wave amplitude 
grows as AE becomes more negative, the effect of damping is reversed : as the wave 
propagates, its amplitude tends to grow to accommodate the energy decrease. In 
class C waves, the primary causes of wave growth and decay are reversible pro- 
cesses. However, in this region damping does have a small effect similar to that 
found in class B waves. 
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Pressure phase lags lead to irreversible energy transfer between the interfacial-wave 
system and the uniform flow at infinity. In the case of downstream-running waves 
moving slower than the flow, the transfer of energy is from the flow to the wave 
system. Thus, as the wave propagates, its energy AE must increase. This implies decay 
for class A waves and growth for class B waves. Again, in class C, the main effects 
are the reversible processes, but pressure effects have the same tendency as in class B. 
In the case of upstream-running waves the energy transfer is from the wave system 
to the flow. This energy drain affects the three wave classes in the same direction 
as material damping. 

The dispersion curves presented in $3.2 can be divided into portions that belong 
to the three wave classes identified above. The location and existence of portions 
corresponding to each class will depend on the flow speed, pressure factors and 
damping parameters. Thus, for instance, strong damping not only destabilizes class A 
waves but can also affect the existence of a class A portion of the dispersion curve. 
This rather complicated situation will be clearly demonstrated by the results 
presented below. 

3.2. Dispersion curves -potential flow over a purely elastic coating 
Figures 2-5 show the dispersion curves for a potential flow ( K ,  = I ,  8, = 0) over a 
purely elastic coating (y, = 0). Each figure contains a plot of wave phase speed 
C = c/C, versus wavenumber kd for a single flow speed U,/C,. Figures 3-5 also contain 
plots of AE. Let us first examine the zero-flow-speed results shown in figure 2. Note 
that the values of C are purely real, as one would expect. These dispersion curves 
consist entirely of class B waves, since the energy of the disturbed system is greater 
than that of the undisturbed system (BE > 0). The curves are symmetric about the 
line C = 0 and show a modal behaviour. Thus, for any wavenumber, there are an 
infinite number of discrete positivenegative pairs of wave speeds that satisfy the 
dispersion relation. The higher the wave speed for a given kd (defined as higher mode), 
the more complex the vertical distribution of displacement in the coating. Note that 
the mode 1 curves (lowest I Cl) are asymptotic to C = 0.837 as kd+co, i.e. infinite 
depth. This limit should be compared with the results of Rayleigh (1885), who 
calculated the speed of surface waves on a semi-infinite solid bounded by a vacuum. 
Both results are dispersionless (C is a constant), but in the Rayleigh-wave case the 
speed is 0.955. The lower wave speed in the present case is a result of the added mass 
of the bounding fluid. Note that in figure 2 there are no waves with I CI < 0.837. 

The dispersion curves for a flow speed of C, are shown in figure 3. Again, the values 
of C are real. Note that the downstream-running (positive-C) waves exhibit only 
minor changes from the no-flow case. On the other hand, the upstream-running 
(negative-C) mode 1 curve shows a large increase in speed (toward zero). Note that 
the curves for AE are positive everywhere, and thus are of class B. When the flow 
speed is increased to l.SC, (figure 4) C is still real everywhere, but the mode 1 
upstream-running curve corresponds to a downstream-running wave for kd > 2.4. 
An analysis for large kd has shown that the mode 1 upstream-running curve first 
crosses the C = 0 axis at kd = 00 for U,/C, = 1.41. Note that the AE curves show 
that the downstream branch is a class B wave for all kd,  as is the part of the upstream 
branch that is still running upstream. The portion of the upstream branch that is 
running downstream has become class A (AE < 0). 

The analysis for large kd also shows that the mode 1 upstream curve meets the 
downstream curve a t  kd = 00 for a flow speed of 1.79Ct. When the curves meet, the 
two values of C becomes a complex-conjugate pair (C = C,+ iCi) corresponding to 
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FIQURE 2. Wave speed versus wavenumber for a potential flow over an elastic coating; 
u,p, = 0, K ,  = 1, e, = 0, Yt = 0, p ~ p  = 1. 

growing and decaying waves. The situation at a flow speed of 1.85 is shown in 
figure 5 .  Note that AE goes to zero where the real-phase-speed curves meet (kd = 3.8, 
C = 0.7), and remains so for the complex parts of the curves (class C). This is a rather 
strong instability with a growth rate kdC, greater than 0.8. For higher flow speeds 
the waves become unstable at  lower kd,  and their growth rate increases. Note that 
at the flow speed 1.85Ct (figure 5) all three classes of waves are present. The stability 
of these three wave classes in the presence of damping and pressure phase lags will 
be examined in $3.3. 

In experiments (see e.g. Hansen & Hunston 1974), the first instability seen with 
increasing flow speed is static divergence, which consists of waves with phase speeds 
of about 0.03Ct. Note that, in the above results with no material damping or pressure 
phase lags, there is no indication of the observed unstable waves. This result should 
be contrasted with the instabilities in a system of potential flow over a flat plate of 
finite extent. In  the latter case, under some conditions, a Kelvin-Helmholtz (class C) 
instability appears with zero phase speed (Dowel1 1975). Presumably, the coating 
instability was termed static divergence because of its qualitative similarity to the 
static divergence of plates. In $3.4 we will see that it is actually a damping instability 
(class A). 
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FIQURE 3. Mode 1 wave speed and activation energy versus wavenumber for a potential flow 
over an elastic coating; U J C ,  = 1, K p  = 1, 8, = 0, yt = 0, prIp = 1. 

When calculations are performed for a conservative pressure (0, = 0) with reduced 
magnitude ( K p  < 1) the wave classes remain qualitatively the same, but the flow 
speed at which the upstream dispersion curve crosses the zero axis (the onset of class A 
waves) and the flow speed at which the upstream and downstream branches meet 
(the onset of class C waves) are both increased. Since the upstream branch first crosses 
the zero axis at  kd = 00 a large-wavenumber analysis can be used to show that the 
flow speed for the onset of class A waves is 

Urn1 
Ct class A onset 

Thus, for instance, with K p  = 0.25 we have Uoo/CtlclassAonset = 2.83. The onset of 
class C waves is correspondingly increased as K p  is reduced. 

3.3. Dispersion curves - the effects of material damping and pressure phase shifts 
In  this subsection we discuss the modifications in the reversible results shown above 
when material damping and pressure phase shifts are present. This section will serve 
to verify the AE calculations and our understanding of the physics of the waves. The 
values of the damping and pressure coefficients used in this section were chosen for 
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FIQURE 4. Mode 1 wave speed and activation energy versus wavenumber for a potential flow 
over an elastic coating; U,ICt = 1.6, K ,  = 1, 8, = 0, yt = 0, prIp = 1. 

illustrative purposes only. Let us first look at the effect of damping. Figure 6 contains 
the dispersion curves for a flow speed of 1.85Ct and a damping ratio of 0.01. The 
corresponding purely elastic case was discussed previously (see figure 5 ) .  At small 
wavenumbers the damping has caused the growth and decay of the neutrally stable 
class A and B waves of the purely elastic case. For the class B part of the downstream 
branch (AE > 0, see figure 5 )  the damping has induced wave decay (negative C,) .  For 
the upstream branch the portion that is class B also shows wave decay, while the 
class A portion (AE < 0) shows wave growth. The class C portion of the curves in 
figure 6 also shows changes when damping is added. For the downstream branch, 
damping has increased the real part and decreased the already negative imaginary 
part. For the upstream branch, damping has decreased the real part of C and has 
had little effect on the imaginary part. These results are in agreement with the 
discussion given in $3.1. When the damping is increased to 0.05 (see figure 7), these 
effects remain similar, except for the class C portion of the upstream branch. The 
additional damping causes the growth rate to  increase - the behaviour of a class A 
wave. Thus it can be seen that sufficient damping not only causes the effects described 
in 53.1 but can also change the class of some parts of the dispersion curves. 

The effects of the pressure phase shift are shown in the dispersion curves of figure 8 
(U,/c ,  = 1.85, yt = 0, 8, = -5", K ,  = 1). Here again, the irreversible process has 
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FIQURE 5. Mode 1 wave speed and activation energy versus wavenumber for a potential flow 
over an elastic coating U J C ,  = 1.85, K ,  = 1, 8, = 0, yt = 0, p f / p  = 1 .  

affected the stability of the otherwise neutral class A and B waves. The downstream- 
branch class B waves obtain a positive growth rate, the class A portion of the 
upstream branch (which is actually running downstream) is decaying, and the class 
B portion of the upstream branch is decaying also. In  the class C portion of the curves 
in figure 8 the pressure phase shift has caused the downstream branch to  increase 
its growth rate, as expected of a class C wave. However, the upstream branch 
decreases its growth rate, again showing the behaviour of a class A wave. 

From the above discussion one can see that for the upstream-running waves of the 
upstream branch both damping and pressure phase shifts cause the waves to decay, 
while for all the downstream-running waves the two effects are in opposition 
regardless of wave class. Thus the stability of a given range of wavenumbers can only 
be determined for detailed conditions. Calculations for comparison with existing 
experimental data are presented in $3.4. 

3.4. Comparison with experimental results 
Hansen & Hunston (1974, 1983), Hansen et al. (1979) and Gad-el-Hak et al. (1984) 
have performed experiments with laminar and turbulent flows over coatings consisting 
of plastisol gels. These materials have extremely complex viscoelastic properties and 
are characterized by high damping (Hunston, Yu & Bullman 1984). The flows were 

7 B L M  158 
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FIQURE 6. Mode 1 wave speed versus wavenumber for a potential flow over a viscoelastic 
coating; U,IC, = 1.85, K ,  = 1, 0, = 0, yt = 0.01, pr/p = 1. 

produced in different ways: Hansen & Hunston used a rotating-disk apparatus, 
Hansen et al. used a flat plate in a recirculating water channel (and included some 
of the previous rotating-disk data) and Gad-el-Hak et al. used a flat plate in a towing 
tank. In all turbulent-flow cases, when the flow speed was increased beyond a critical 
value, slowly moving unstable waves appeared on the coating surface. Hansen & 
Hunston also found the instability under laminar flow conditions, while Gad-el-Hak 
et al. did not. This instability has been named static divergence. A t  still higher flow 
speeds in the experiments of Gad-el-Hak et al., unstable waves with greater phase 
speeds appeared. Calculations for comparison with the experimental results of both 
the slow and fast waves are presented below. 

In  order to compare the calculations with the experiments, we must determine 
appropriate values for the damping ratio and the pressure coefficients. In our rather 
simple model, these coefficients are constants. In any boundary-layer flow the 
pressure coefficients K ,  and OP are continuous functions of wave speed and 
wavenumber for a given boundary-layer velocity profile, while 7t and C, depend on 
frequency for the plastisol material used in the experiments.? Thus, to apply the 

t The frequency dependence of C, and rt indicates that the Voigt model does not give an accurate 
representation of the plastisol material. It is used here because we believe it contains the essential 
physics to model the overall phenomenon while maintaining mathematical simplicity. 
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FIQURE 7. Mode 1 wave speed versus wavenumber for a potential flow over a viscoelastic 
coating, U,/C, = 1.85, K ,  = 1, 8, = 0, yt = 0.05, pr/p = 1. 

model, we must choose the material and pressure coefficients to correspond to average 
values for the boundary layer, coating properties and wave characteristics found 
experimentally. For the pressure coefficients, we have chosen two sets of values to 
study static divergence under laminar and turbulent boundary layers. The corre- 
sponding experiments are characterized by slow wave speeds (at most a few percent 
of C, or Urn). For turbulent boundary layers in Gad-el-Hak et al. the wavelengths at 
onset ranged from 3.0 to 8.5 times the displacement thickness 6*, while in Hansen 
et al. for the flat-plate data we estimate A/&* = 2 0 4 0 .  For comparison with these 
results, we have chosen K p  = 0.25 and 8, = - 10" from Kendall's (1970) experimental 
data on turbulent flow over wavy walls. These data, which are the most appropriate 
available, are for A/&* in the range 14-20, midway between the experiments of 
Gad-el-Hak et al. and Hansen et al. (see table 1). For static divergence under 
laminar-flow conditions we have used the theoretical work of Balasubramanian & 
Orszag (1983) and chosen the values K p  = 0.067 and 8, = -30.4" for A/&* = 12. 
These values correspond to the experiment of Gad-el-Hak et al. To study the stability 
of the faster-moving waves with phase speeds of about 0.3 times the flow speed, we 
have again used Kendall's data and chosen K p  = 0.25 and 8, = -20". 

As for the material properties, the experimental papers have scaled all results and 
experimental conditions with the layer depth and a shear-wave speed taken from a 

7-2 
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FIQURE 8. Mode 1 wave speed versus wavenumber for a flow with phase shift over an elastic 
coating; U, /C ,  = 1.85, K ,  = 1, e p  = -5', yt = 0, p f / p  = 1. 

/\/a* (' 'cc/"t)onset ( ~ r / l J m ) o n s e t  

Theory 14-20? 2.86 0.007 
at yt = 3 

Hansen el al. (1979) 20-40 3 f  0.008-0.0 1 2 
Gad-el-Hak el al (1984) 3-8.5 4.ti-8.0 0.004-0.008 

t In the theory K ,  and 8, are obtained from Kendall's (1970) data, which are for the quoted 
range of A/&*.  

The rotating-disk data give ( IJoc/r'lt)onset = 3.3. 

TABLE 1. Experimental and theoretical values for static divergence - turbulent flow 
over a flat plate 

static measurement of the shear modulus for each coating. In  an attempt to compare 
our results with the experiments, we have obtained approximate values of yt from 
the material properties given by Hunston et al. (1984). These measurements include 
the shear-wave speed and loss tangent as a function of frequency. Accordingly, two 
values of the damping parameter have been chosen as typical of the experiments: 
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3 for the static divergence comparison (low frequency) and 0.3 for the faster-moving 
waves (high frequency). For the static divergence results, we have also varied the 
damping ratio from 1 to 100 to cover all possible experimental conditions. 

Slow-wave results 
Let us first examine the slow-wave results and then look at  the higher-speed case. 

Calculations for the turbulent-boundary-layer conditions are given in figure 9. The 
figure contains curves of wave phase speed cr/Ct = C, growth rate ci kd/Ct = wi and 
activation energy A E d / p q a 2  versus wavenumber for two flow speeds U,/C,  = 2.5 
and 3.5. Only the portion of the dispersion curves around C = 0 are plotted. Note 
that C,  has been multiplied by 100 for plotting purposes. These dispersion curves 
correspond to the upstream-running branches of the reversible results in figures 2-5. 
For the lower flow speed the C, curve crosses the zero axis at a wavenumber of about 
1.2 ; and, for wavenumbers greater than 1.2, C, is positive. Since the corresponding 
wi values are negative and the AE values are positive for all kd, i t  appears that these 
are stable class B waves. At the higher flow speed the growth rate and phase speeds 
are above their low-flow-speed counterparts. As the wavenumber increases, the AE 
curve changes sign from positive to negative at the wavenumber where the growth 
rate changes from negative to positive, thus indicating a class A instability. The 
growth rate of this instability (wi = 0.2) is rather high considering its low phase speed 
(C, = 0.02 at kd = 4).  Thus we find that the ratio of the wave period to the growth 
timescale wi/kdC, is equal to 2.5. The onset flow velocity for this instability is 
U,/C = 2.86, and it occurs for high wavenumbers first. 

Table 1 contains the onset flow velocities and wave speeds for the theory and the 
existing flat-plate experimental data. The theoretical onset flow velocity corresponds 
well to the experimentally determined values for static divergence found by Hansen 
et al. (1979) : U,/C, = 3 for the flat-plate experiments. The paper by Gad-el-Hak et 
al. (1984) shows the onset velocity to vary with coating thickness. Their values range 
from U,/C,  = 4.5 at a thickness of 0.71 cm to about 8 a t  0.15 cm. Noting that the 
damping ratio varies as l l d ,  we have examined the dispersion curves to find the onset 
velocity of static divergence for the range 1 < yt < 100. The results show the onset 
velocity to be a constant for the entire range of yt. We suspect that the model’s poor 
performance in predicting the magnitude and trend of the data of Gad-el-Hak et al. 
is the result of using a single set of values for the pressure coefficients. The range of 
A/&* for these experiments is considerably lower than the values in Kendall’s 
experiments, from which we have obtained our coefficients. Thus a lower value of 
K ,  would be more appropriate to the results of Gad-el-Hak et al., and this value should 
be decreased with coating thickness, i.e. wavelength. We compute that K, = 0.1 
would result in an onset velocity of 4.5Ct, the value obtained experimentally at the 
largest coating thickness. The onset velocities of Hansen et al., which are for A/&* 
higher than Kendall’s data, indicate that the pressure parameters are accurate. 

The calculahd speed of the unstable waves compares well with the experimental 
values (see table 1). At onset we find cr/Ct = 0.02 or c , / U ,  = 0.007. The experiments 
of Hansen et al. find c , / U ,  = 0.00&0.012. The values found by Gad-el-Hak et al. are 
quite similar (c , /U,  = 0.004 for the 0.24 cm coating to c , /U,  = 0.008 for the thickest 
coating). 

The comparison between the predicted wavelength of static divergence and the 
experimentally obtained values is not as satisfying. The present model predicts that 
as the flow speed is increased the growth rate first becomes positive at kd = 00. A t  
higher flow speeds the growth rate is rather flat, with kdw, attaining its maximum 
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FIGURE 9. Wave speed, growth rate and activation energy versus wavenumber for comparison with 
slow-wave experimental measurements - turbulent boundary layer; K ,  = 0.25,8, = - lo", yt = 3, 
PrIP = 1. 

value at kd = oc) . It is believed that the use of a more accurate pressure model would 
produce a maximum growth rate at a finite wavenumber. As was explained above, 
in the present model, the same coefficient is applied to  all waves regardless of their 
length compared with the boundary-layer thickness. I n  reality, waves of shorter 
length (larger k )  have smaller K p .  Gad-el-Hak et al. have measured the wavelength 
of the static divergence waves. They found that the wavelength increased with d .  For 
a general comparison, we have used the wavelength of the zero-crossing of the C,  curve 
(see (A 7) in the Appendix) to compare with the experimental data. If the observed 
waves are indeed the result of the class A instability, then they should have kd-values 
that are higher (or h/d-values that are lower) than the theory. The data of Gad-et-Hak 
et al. are plotted in figure 10 along with the zero-crossing results showing the validity 
of the model. 

A plot similar to that in figure 9 is given in figure 11, but this time for a laminar 
boundary layer. The behaviour in figure 11 is qualitatively similar to that in figure 9, 
but the onset velocity for static divergence is much higher in the laminar-flow case. 
The AE curves, which have been omitted to  avoid clutter, again verify that the 
instability is class A. The calculations predict an onset flow velocity of 5.92Ct or 2.1 
times the value in the turbulent case. Note also that at about 0.6Ct above the onset 
flow speed the phase speed of the laminar case is as much as 2.5 times larger than 
in the turbulent case, while the growth rate is 2.5 times smaller. The increase in onset 
speed for the laminar case is primarily the result of the smaller pressure coefficient ; 
a higher flow speed is needed to  pull the upstream branch of the dispersion curve up 
so that the high-kd part becomes a downstream, unstable class A wave. 

I n  the rotating-disk experiments of Hansen & Hunston (1983) it  was found that 
the onset flow velocity in the laminar-flow case increased to 1.5 times the turbulent 
value. (The change from turbulent to  laminar conditions was brought about by 
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Iata from Gad-El-Hak era / .  (1984) 0 
0 d = 0.15 cm 
A 0.24cm 

0 
0 0.32cm 0.40cm 0.71 cm J: A 

From zero-crossing of the upstream 
branch of the mode 1 dispersion curve 
(K, = 0.25, e, = 0, Y t  = 0, Pr/Pe = I )  

I 

0 5 10 15 
Flow speed U,/Ct 

FIQURE 10. Comparison of measured wavelength of static divergence from Gad-el-Hak et al. 
(1984) with wavelength at zero-crossing of upstream dispersion curve. 
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FIQURE 11.  Wave speed and growth rate versus wavenumber for comparison with slow-wave 
experimental measurements - laminar boundary layer; K, = 0.067, 0,  = - 30.4', yt = 3, pr/pc = 1. 
(Note the difference in scale factor for c,/C, from figure 9.) 
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FIGURE 12. Wave speed and growth rate versus wavenumber for comparison with slow and fast 
wave experimental results - Turbulent boundary layer; Ua/Ct = 8, K ,  = 0.25, pr/pc = 1. 

increasing the viscosity of the fluid in the rotating-disk apparatus.) I n  the results of 
Gad-el-Hal et al. no waves were found under laminar conditions even at  flow speeds 
as high as lZC,. This represents an increase of a factor of 2.7 from their turbulent 
value. One must consider that  this large increase may be due to the disturbance-free 
character of the towing tank under laminar conditions. 

Fast wave results 

The experiments of Gad-el-Hak et al. mention the appearance of faster waves a t  
high flow speeds. We have attempted to  show, at  least qualitatively, how these waves 
might come about. Because of the frequency dependence of the shear-wave speed and 
relaxation time for plastisol materials, the damping ratio for waves that move with 
a speed of about C, would be approximately one order of magnitude less than that 
for static divergence waves. I n  figure 12 we compare the dispersion curve for growing 
slow waves (y, = 3, K ,  = 0.25, 8, = -10") to one for growing fast waves (yt = 0.3, 
K ,  = 0.25, 8, = -20') a t  a flow speed of SC,. The slow-wave dispersion curve is 
qualitatively similar to that in figure 9. The shape of the faster-wave curve is 
reminiscent of the downstream branch of a Kelvin-Helmholtz or class C instability. 
Note that the growth rate of the faster waves is everywhere greater than the slow-wave 
curve, indicating that it would dominate the experimental results. 

4. Conclusion 
The theory derived in this paper adequately describes some aspects of the dynamics 

of waves on viscoelastic coatings bounded by a flowing fluid. It has demonstrated 
the importance of the dimensionless damping parameter yt and the phase and 
magnitude of the surface pressure for the wave behaviour. This simple model, which 
couples a linear Voigt solid and a modified potential flow, has been used to predict 
the results of experiments consisting of laminar and turbulent flows over complex 
viscoelastic coatings. Static divergence, the most frequently observed instability, is 
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shown to be a damping instability (Benjamin's class A). The model gives reasonable 
predictions in both magnitude and trend for the onset flow velocity and phase speed 
of the waves under turbulent conditions and shows that the wavelengths are 
consistent with a class A wave in this system. The model also predicts a higher onset 
flow velocity for laminar boundary layers, in qualitative agreement with experiment. 
It is thought that more accurate predictions could be obtained by increasing the 
complexity of the flow and solid model without changing the basic physics of the 
coupling between the two. 

This work was supported by the Office of Naval Research under Contract 
NOOO14-81-C-0497. 

Appendix. Simplifications of the Helmholtz decomposition 
I n  $2 a Helmholtz decomposition was introduced to represent the solid-displacement 

field as a sum of two parts: an irrotational component (or longitudinal wave) 
described by the scalar 4, and a solenoidal component (or transverse wave) described 
by the scalar $. It was also noted there that g5 and II. satisfy (10) and (1  1 )  : 

Equations (A 1 )  follow respectively from the divergence and curl of the solid equation 
of motion. In  $2 we assumed 8 = Y = 0 and derived the dispersion relation (20). 
We now prove the validity of this assumption. The decomposition into potential 
functions must be consistent with the equation of motion itself, which leads to the 
following two constraints : 

= 0. (A 2) 
a$ c;aY a 3  c&aF -+--=o ---- 
ax cz, ay ay cz, ax 

Upon solving the Laplace equation (A 1 )  for 3 and Y, and ensuring satisfaction of 
the constraints (A 2), we obtain the following forced wave equations for the potential 
amplitudes &y) and $(y) : 

where 

d24 
dY2 

d2$ 
dY2 

--k2a2$ = iZ2(S, sinh ky+S2 cosh ky), 

-- k2P2$ = (S, cosh ky+S2 sinh ky), 

For c2 + 0 we shall demonstrate that  S,  = S, = 0, in which case (A 3) reduce to 
(13). With c2 + 0 we have a2 + 1 and B2 + 1 ; hence the solutions of (A 3) take the 
form 

1 

P \ ( A 4 )  
(S, cosh ky + S, sinh ky) + S, cosh /3ky + - S, sinh Bky, 

1 '= k"1-T) 

J 1 
= kZ(l-a2) a 

(S, sinh ky + S,  cosh Icy) + S, cosh aky + - S, sinh aky. 
iC2 
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Now the displacement amplitudes, as obtained from (9), are given by 
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Substitution of (A 4) into (A 5 )  leads to expressions for [(y) and $(y) which contains 
the six constants S,, S,. Requiring that these expressions be compatible with the 
original equation of motion governing the displacement amplitudes leads to 
S, = S, = 0 unless a2 = p” = 1 (i.e. c2 = 0). Thus for c =I= 0 the assumption 3 = F = 0 
is proved, and the dispersion relation obtained in $2 is indeed appropriate for 
unsteady waves. 

When c2 = 0, a2 = B2 = 1 ,  and the solutions of (A 3) are 

1 q0 = 5 (S,  y sinh ky + S,  y cosh ky) + S, cosh ky + S, sinh ky, 

q! - - (S, y cosh ky + S,  y sinh ky) + S, cosh ky + S, sinh ky. 

Upon substituting (A 6) into (A 5) ,  we obtain expressions for to and to in terms of 
the six coefficients S,, . . . , S, again. However, two pairs of coefficients always appear 
in the form S, + is, and S, + is,, implying that there are really only four independent 
coefficients. Satisfaction of the four boundary conditions (5)-(8) yields a secular 
determinant, which upon evaluation yields the following criterion for a static solution 

iZ2 1 ( A 6 )  

O -  2k 

(A 7 )  
1Pf u, 2 

2 P  ct 

1 +C4 + ( 1  -C4) cosh 2kd + 2( 1 -C2)2 (kd), 
(1  + .Z2) sinh 2kd - (1 -Z2) 2kd 

c2 = 0:  
-- ( ) eiep = 

In  the limit of an incompressible solid, C2-+0. 
It is straightforward but tedious to show that condition (A 7 )  is contained in the 

dispersion relation (20). By expanding (20) in powers of c, for small c, one obtains 
(A 7 )  as the coefficient of the c4 term. Thus (20) is also correct for c = 0. Expression 
(A 7 )  determines where along the kd-axis the C, and Ci curves simultaneously cross 
zero. For 8, = 0 this condition occurs at real values of kd. For 8, =k 0 the C, and Ci 
curves do not cross zero a t  the same real value of kd. 
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